DSS
Decision Sciences & Systems
Technical University of Munich
 
71071 Heidekrüger 1 CD SW

Stefan Heidekrüger

Department of Informatics (I18)
Technical University of Munich
 
E-Mail: stefan heidekrueger   tum de
          .                    @       .
Office:
Room 01.10.056
Boltzmannstr. 3
85748 München, Germany 
Phone: +49 (0) 89 289 - 17530
Hours: by arrangement
 

 

I'm a PhD student at the DSS chair supervised by Prof. Bichler. My research focusses on computation of equilibria in markets and auctions via multi-agent reinforcement learning methods.

 

We currently have several possible topics for student projects (MSc or BSc theses, IDP, Guided Research) in this research area. If you're looking for a project and interested in (Multi-Agent) Reinforcement Learning, Neural Networks, Nonlinear Optimization, Market Design and/or Algorithmic Game Theory, feel free to get in touch.

 

 

 

Short Bio

Education


  • 2014 - 2016        M.Sc. Mathematics in Operations Research, Technische Universität München
  • 2014                   Erasmus+ student at KTH Royal Institute of Technology (Stockholm, Sweden)
  • 2012 - 2013        Visiting Student at The Hong Kong University of Science and Technology 
  • 2010 - 2014        B.Sc. Mathematics, Technische Universität München

  

Working Experience


  • Since 2018         Research Associate, Decision Sciences & Systems, Technische Universität München
  • 2016 - 2018        Data Scientist, Business Analytics and Artificial Intelligence, Telefónica Germany
  • 2013 - 2016        internships at a.hartrodt (2013) and zeb.rolfes.schierenbeck.associates (2015)
                               working student positions at a.hartrodt (2013-14), Telefónica Germany (2016), and SAP (2016)
                               student research assistant positions at TUM (2014, 2015) and HelmholtzZentrum München (2015-16)
 
 

Publications

S. Heidekrüger, P. Sutterer, and M. Bichler. Computing approximate bayes-nash equilibria through neural self-play. In Workshop on Information Technology and Systems (WITS19), Munich, Germany, 2019.

 

Conference Talks

Teaching

Courses


  • WS 18/19, 19/20     Business Analytics, Teaching Assistant
  • SS 19                      Seminar on Data Mining, TA          

Completed Student Projects


  • Kevin D. Falkenstein    Learning Equilibrium Strategies in Auctions via Deep Neural Networks, MSc Thesis (2018)
  • Sebastian Rief              Detection of anomalies in large-scale accounting data using unsupervised machine learning, MSc Thesis (2019)
  • Florian Ziesche             Human Interpretable Machine Learning: A Machine Learning Approach for Risk Scoring, MSc Thesis (2019)             
Decision Sciences & Systems (DSS), Department of Informatics (I18), Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany
©2002-2020 DSS All Rights Reserved
Impressum, Privacy Policy, Copyright Information and Disclaimer
Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
Ok